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Three Models of Wind-Gust Disturbances for the
Analysis of Antenna Pointing Accuracy

W. Gawronski1

This article develops and compares three wind models that are used to simulate
antenna servo errors. The first model represents wind forces acting on the antenna
dish, and it closely represents actual wind action. The second model represents
wind gusts as torque disturbances applied to the antenna drives. The third model
represents gusts acting at the antenna rate input. A wind filter introduced in this
article makes the wind gusts of the third model equivalent to the gusts of the second
model. The third model is of recent interest, since it is applicable to the currently
developed models of the antenna closed-loop systems.

Simulink models of the 34-m and 70-m antennas’ closed-loop systems were devel-
oped to simulate antenna servo errors in wind gusts. The article shows that for the
34-m and 70-m antennas all three models give similar results, and that the results
are comparable to the field measurements of the servo errors taken in wind.

I. Introduction

There are two known ways to model wind gusts acting on an antenna structure. See [2,3,5] and
Fig. 1(a) for the first one, where the wind-gust disturbances are modeled as force acting on the antenna
dish. The white noise of unit standard deviation is filtered by the Davenport filter (on the spectrum of
the Davenport wind gusts, see [6]) and appropriately scaled, with scale factor kf . This model is used
when an antenna finite-element model is available, and it includes forces at the dish panels. It is mainly
used during the design stage. The second model is presented as a time-varying torque, Tw(t), acting at
the antenna drives [see Fig. 1(b)]. The wind torque adds up to the antenna drive torque, Tc, as illustrated
in Fig. 1(b), producing the total torque, T , acting at the structure. The Davenport filter again is used
to shape white noise into wind gusts, but a different scaling factor, kt, is now used. This model is often
used in antenna analyses, giving adequate approximation of servo errors. It is used, for example, when
antenna structure and antenna drives are modeled as separate units. There are models, however, where
antenna and drives are inseparable. Such is the case of the antenna rate loop model obtained from field
tests and system identification, where one obtains an integrated model of the antenna structure and the
attached drives. In this model, as shown in Fig. 1(c), the rate command is the input to the model, and
the encoder reading is its output, while the drive torque is an internal variable. In this situation, the
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Fig. 1.  Wind-gust models:  (a) Model 1, wind forces acting on the dish, (b) Model 2, wind torques acting at the
drive motors, and (c) Model 3, wind rate acting at the rate input.
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only possible entry point for the wind-gust disturbances is the rate input. In this article we determine
the model of wind disturbances equivalent to the previous model. The equivalent model is obtained by
adding a filter with transfer function F [see Fig. 1(c)]. The wind torques are now filtered to obtain an
equivalent rate input signal. The filter transfer function F is such that the action of white noise [see
the model in Fig. 1(c)] causes the same servo error as the action of white noise in the model shown in
Fig. 1(b).

This article presents the development of the Davenport filter; the determination of force, kf , and
torque, kt, gains; and the determination of the filter transfer function, F , for 34-m and 70-m antennas.
It also compares servo errors in wind gusts produced by the three wind models and measured at the
stations.

II. The First Wind Model: Wind Forces Acting on the Dish

In this model, as shown in Fig. 1(a) and described in [2,3,5], the wind gust is represented as a uniformly
distributed force acting on the antenna dish, either from its front, its back, or its side. The gust force is
obtained from the wind-gust velocity of unit standard deviation, ∆vo; on the other hand, the velocity,
∆vo, is obtained from the Davenport spectrum. Consider first the determination of velocity ∆vo.

A. Obtaining Wind-Gust Velocity from the Davenport Spectrum

The total wind velocity, v, is a combination of a steady-state or mean velocity, vm, and a turbulence
(gust) velocity, ∆v, i.e.,

v = vm + ∆v (1)

The gust component is a random process with zero mean and a spectrum called the Davenport spectrum.
The Davenport spectrum, Sv(ω), depends on average wind speed and terrain roughness and is given by

Sv(ω) = 4800vmκ
βω

(1 + β2ω2)4/3
(2)

where β = 600/πvm, and κ is the surface drag coefficient, obtained from the roughness of the terrain (see
[5]):

κ =
1(

2.5 ln
(

z

zo

))2 (3)

In these equations, z is the distance from the ground to the antenna dish center (z = 17 m for a 34-m
antenna), and zo is the height of the terrain roughness (zo = 0.1 to 0.3 m at Goldstone, California). Thus,
κ = 0.006 to 0.010 for the 34-m antenna. For the 70-m antenna, z = 35 m and zo = 0.1 to 0.3 m; thus,
κ = 0.005 to 0.007.

The wind-gust velocity, ∆vo, of unit standard deviation is obtained by applying a white-noise input
of unit standard deviation to a filter that approximates the Davenport spectrum. The unit standard
deviation is obtained by appropriate scaling of the filter gain. This filter is called a Davenport filter. The
filter transfer function is of fourth order and was obtained in [3] and [5] by adjusting the filter parameters
such that the magnitude of the filter transfer function best fits the Davenport spectrum within the antenna
bandwidth of [0.001, 20] Hz. The resulting filter transfer function is
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H =
3.9021s3 + 230.1426s2 − 686.3151s + 3.4197

0.331s4 + 38.2997s3 + 224.7118s2 + 22.7788s + 0.3538
(4)

The corresponding digital filter for a sampling time of 0.02 s is as follows:

Hd =
0.1584z3 − 0.3765z2 + 0.2716z − 0.0534

z4 − 2.9951z3 + 3.0893z2 − 1.1930z + 0.0988
(5)

This filter is scaled such that, applying white noise of unit standard deviation, one obtains an output,
∆vo, of unit standard deviation as well.

The plots of the square root of the Davenport spectrum and of the magnitude of the filter transfer
function are shown in Fig. 2, and a sample of the wind speed generated by the filter is shown in Fig. 3.
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Fig. 2.  The Davenport spectrum of the wind
velocity and the magnitude of the filter transfer
function.
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B. Obtaining Wind Force from Wind Velocity

In this section, we derive the time history of the wind-gust force. In order to do this, consider first a
steady wind for which the quadratic law relates its velocity, vn, and force, Fn:

Fn = kF v2
n (6)

The constant kF depends on the scaling of the structural modal model. In our case, modes were scaled
such that a 161 km/h wind corresponds to a force of 4.4482 N. Thus, from the above equation, for this
case we obtain

kF = 0.0022 Ns2/m2 (7)

where speed is in m/s and force in N. Equation (6) represents a steady (or static) wind force.

The next step is to obtain time-varying forces generated by wind gusts using the velocity time history,
∆vo. Consider a long enough time interval (e.g., 120 s or more). The wind speed over this interval can
be decomposed into its constant (or mean) component, vm, and variable component, ∆v, of zero mean
value [see Eq. (1)]. We similarly decompose the corresponding wind forces:

F = Fm + Fw (8)

Variable Fm represents the steady-state (static-force) component. The wind-gust force variations, Fw,
are related to wind velocity variations, ∆v, by expanding Eq. (6) in Taylor series. We obtain Fw =
(∂F/∂v)|v=vm

∆v, and, since (∂F/∂v)|v=vm
= 2vm, therefore

Fw = 2kF vm∆v (9)

We scale the wind-gust ∆v obtained in the previous section to obtain its unit standard deviation, i.e.,
we find the speed ∆vo(t) such that

∆vo(t) =
∆v(t)

σv
(10)

where σv is the standard deviation of ∆v. However, the standard deviation of the wind gust is proportional
to the mean wind speed (see [4]):

σv = α vn (11)

Combining Eqs. (10) and (11), one obtains

∆v = αvm∆vo (12)

In the above equations,
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α =
√

6κ (13)

and κ is the surface drag coefficient [see Eq. (3)].

Introducing Eq. (12) to Eq. (9), one obtains the final relationship between wind-gust velocity and
force:

Fw = kf∆vo (14)

where

kf = 2kF αv2
n (15)

For the 34-m and 70-m antennas, kF = 0.00223 Ns2/m2, and α = 0.20; thus,

kf = 8.9200 × 10−4v2
m (16)

for speed in m/s and force in N. For 8.94-m/s wind, the force gain is kf = 0.0713 Ns/m.

III. The Second Wind Model: Wind Torque Acting at the Drives

In this model, the wind torque disturbance is added to the drive torque. It is a time function, Tw(t),
determined from the velocity gusts, ∆vo. This model is shown in Fig. 1(b), where the white noise is
applied to the Davenport filter. The filter output is the velocity gust ∆vo of unit standard deviation,
which is consequently scaled to obtain wind torque that is added to the antenna drive torque. In this
model, the Davenport filter is identical to the filter presented in Section II. The scaling factor, kt, from
the velocity to torque is obtained from the wind quadratic law for torques, Tn, and for steady wind speed,
vm:

Tn = kT v2
m (17)

The constant kT in this equation is particular for an antenna, antenna elevation position, antenna site,
terrain profile, and wind direction. It is determined as follows. First, the wind torque depends on wind
pressure, and the pressure–torque relationship was determined experimentally in wind tunnels2,3,4 and
in field tests [4]:

Tn = ctADpn (18)

where D is the antenna dish diameter, m; A is the antenna dish frontal area, A = πD2/4 m2; and ct is a
dimensionless torque coefficient. This coefficient depends on the wind direction and the antenna elevation
position, and it varies from −0.05 to 0.25.

2 R. B. Blaylock, “Aerodynamic Coefficients for a Model of a Paraboloidal-Reflector Directional Antenna,” JPL Interoffice
Memorandum (internal document), CP6, Jet Propulsion Laboratory, Pasadena, California, May 1, 1964.

3 N. L. Fox, “Load Distribution on the Surface of Paraboloidal Reflector Antennas,” JPL Interoffice Memorandum (internal
document), CP4, Jet Propulsion Laboratory, Pasadena, California, July 1962.

4 N. L. Fox and B. Layman, Jr., “Preliminary Report on Paraboloidal Reflector Antenna Wind Tunnel Tests,” JPL Interoffice
Memorandum (internal document), CP3, Jet Propulsion Laboratory, Pasadena, California, February 28, 1962.
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Next note that, similarly to the torque, the dynamic pressure of wind, p, depends on wind speed5 [4]:

pn = αpv
2
m (19)

where αp is the static air density and αp = 0.6126 Ns2/m4 (pressure is in N/m2 and velocity is in m/s).
Introducing Eq. (19) to Eq. (18), one obtains

Tn = ctαpADv2
m (20)

Comparing Eqs. (20) and (17), we obtain the quadratic law coefficient kT :

kT = ctαpAD = ctαp
πD3

4
(21)

For a 34-m antenna, D = 34 m, and for ct = 0.25 (front and side wind), one obtains kT = 4661 Ns2/m.
The plot of the wind quadratic law, Eq. (17), for the above coefficient is shown in Fig. 4(a). For a 70-m
antenna, D = 70 m, and for ct = 0.25 (front and side wind), one obtains kT = 41, 257 Ns2/m. The plot
of the wind quadratic law, Eq. (17), for the 70-m antenna is shown in Fig. 4(b).

The torque equation, Eq. (17), is valid for steady wind only. However, the wind-gust torque can
be derived from it using linear expansion. Indeed, it is determined from the velocity gusts, ∆vo, by
linearizing Eq. (17), which gives

∆T = 2kT vm∆v (22)
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The above represents the antenna axis torque. The wind torque at the pinion axis, Tw, is the axis torque,
∆T , divided by the axis-to-pinion ratio, Np; thus, the pinion torque is also proportional to the velocity:

Tw =
∆T

Np
=

2kT vn

Np
∆v (23)

In simulations, we will use a wind-speed model with unit standard deviation ∆vo(t). It was previously
derived that ∆vo(t) is related to an arbitrarily scaled wind speed as in Eq. (12).

Introducing Eq. (12) to Eq. (23), one obtains

Tw = kt∆vo (24)

where

kt =
2kT α

Np
v2

m (25)

For the 34-m antenna, kT = 4661 Ns2/m, α = 0.20, and Np = 42; thus,

kt = 44.4v2
m (26)

where speed is in m/s and torque in Nm. For the 70-m antenna, kT = 41, 257 Ns2/m, α = 0.20, and
Np = 47 in azimuth and Np = 56 in elevation; thus, for the azimuth axis,

kt = 351.1v2
m (27)

where speed is in m/s and torque in Nm; and, for the elevation axis,

kt = 294.7v2
m (28)

where speed is in m/s and torque in Nm.

The algorithm to generate a wind-gust torque for Model 2 is given in the Appendix.

IV. The Third Wind Model: Wind Acting at the Rate Input

In this model, the wind gusts are applied at the rate input. It is shown in Fig. 1(c), where the white
noise is applied to the Davenport filter; its output is the velocity gust ∆vo of unit standard deviation,
appropriately scaled with gain kt to obtain wind torque. Next, the torque is filtered with filter F , which
produces a rate that is added to the rate input of the antenna. In this model, the Davenport filter and
the scaling factor, kt, are identical to the filter and factor presented in Section III. The task of this section
is to find the filter transfer function F such that the encoder response to the wind disturbances is almost
the same as the response for wind Model 2.

In order to have the encoder response the same as in wind Model 2, the transfer function of the filter
should be the inverse of the drive transfer function. The drive transfer function, Fd(s), from the rate
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input to the torque output is shown in Fig. 5 (solid line). Within the antenna bandwidth it can be
approximated with the integral, i.e., with Fd(s) = kd/s, where kd is the drive gain. The magnitude of
the approximate transfer function is shown in Fig. 5 (dashed line). Thus, the filter transfer function, as
an inverse of the approximate drive transfer function, is a derivative with the inverse gain

F (s) =
s

kd
(29)

The corresponding discrete-time filter of sampling time ∆t is as follows:

F (z) =
1
kd

z − 1
z ∆t

(30)

For the 34-m antenna, the drive gains are

kd =
{

7.11 × 106 azimuth drive
Nms/deg

7.58 × 106 elevation drive
(31)

For the 70-m antenna, the drive gains are

kd =

{
1.07 × 108 azimuth drive

Nms/deg
1.02 × 108 elevation drive

(32)

The algorithm to generate the wind-gust rate for Model 3 is given in the Appendix.
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V. Equivalence of the Wind Torque and the Wind Rate Models

The nature of the first model—which consists of wind forces acting on the dish—is different from the
second and third models, which consist of torque and rate signals acting on the antenna drives. Thus, the
first and second model and the first and third model can be compared only in statistical terms, such as
standard deviation of the resulting antenna servo error. However the second and third models are closely
related and can be compared directly. Namely, we compare the antenna encoder output due to the wind
gusts that are generated by the second model (wind torque) and by the third model (wind input rate).
In order to do this, we apply the white noise as shown in Fig. 1(b), with the position loop open. The
resulting elevation encoder reading is shown in Figs. 6(a) and 6(b). The plots show the encoder outputs
for the two wind cases are very close, indicating close equivalence of the second and third models.

VI. Closed-Loop Pointing Accuracy with Wind Disturbances

We simulated wind gusts using all three models, determined the antenna servo error in azimuth and
elevation for the front and side wind directions, and compared the obtained results with the field data.
The Simulink model was developed for the 34-m antennas and allows for simulation of three wind models,
shown in Figs. 7(a) and 7(b). The simulation results are given in Table 1, where they are compared with
the measured servo errors from [1]. The servo errors were measured repeatedly, and the table shows the
minimal and maximal values of the standard deviation of the errors. The table shows that the simulation
results are within the range of measurements, except for the elevation error in the front wind of Model 1,
which exceeds the measurements.

A similar model was developed for the 70-m antenna, and the simulation results are given in Table 2.
The field data were collected by David Girdner in November 1999; however, no wind direction was
recorded. The simulation results are close to the data, except for Model 1 in azimuth, for the reason
explained in [1].
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Table 1. Standard deviations of 34-m antenna servo
errors, mdeg, due to 12.5-km/h wind gusts.

Front wind Side wind
Model/

field data Azimuth, Elevation, Azimuth, Elevation,
mdeg mdeg mdeg mdeg

Field dataa 0.23–0.48 0.6–1.2 0.23–0.48 0.9–1.5

Model 1 0.33 1.73 0.30 1.02

Model 2 0.32 1.20 0.32 1.20

Model 3 0.44 1.21 0.44 1.07

a From [1].

Table 2. Standard deviations of 70-m antenna servo
errors, mdeg, due to 12.5-km/h wind gusts.

Front/side wind
Model/

field data Azimuth, Elevation,
mdeg mdeg

Field dataa 1.3 2.1

Model 1 0.02 2.0

Model 2 1.7 2.0

Model 3 1.6 1.9

a Measured and reported by David Girdner at the
DSS-14 antenna in November 1999.

VII. Conclusions

In this article, wind-gust velocity of unit standard deviation and of the spectrum of the Davenport
filter was derived. This velocity was used to create three models of the wind forces acting on the antenna
dish and the torques acting on the antenna drives. The three wind-gust models were used in the analysis
of the antenna closed-loop model and the standard deviation of the servo errors in azimuth and elevation,
and for simulations of side and front winds, which were compared with previously collected wind data.
The simulations show that Models 2 and 3 are equivalent and that all three models produce servo errors
that match the field data.
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Appendix

Algorithms to Generate Wind Gusts

I. Algorithm 1

To generate a time profile of wind-gust torque (for Model 2), do the following:

(1) Apply white noise to the filter, H, with the following transfer function:

Hd =
0.1584z3 − 0.3765z2 + 0.2716z − 0.0534

z4 − 2.9951z3 + 3.0893z2 − 1.1930z + 0.0988

and obtain time series of wind ∆v(t). The above filter represents the Davenport wind-gust
model.

(2) Calculate σv, the standard deviation of ∆v(t).

(3) Divide ∆v(t) by σv, obtaining wind speed with unit standard deviation

∆vo(t) =
∆v(t)

σv

The standard deviation of ∆vo(t) is 1.
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(4) Scale ∆vo(t) by kt to obtain Tw(t):

Tw(t) = kt∆vo(t)

where

kt =
2kα

Np
v2

m

and vn is the mean wind speed, Np is the gear ratio between the antenna main axis and
the drive pinion, k is the “wind quadratic law,” α =

√
6κ, and κ =

(
2.5 ln(z/zo)

)−2. In the
latter equation, z is the distance from the ground to the antenna dish center and zo is the
height of the terrain roughness.

II. Algorithm 2

To generate a time profile of wind-gust rate (for Model 3), do the following:

(1) Follow the steps of Algorithm 1 to obtain Tw(t).

(2) Filter Tw(t) to obtain uw(t). Use filter F with the transfer function as follows:

F (z) =
1
kd

z − 1
z ∆t

where kd is the drive gain from input u to torque T and ∆t is the sampling time.
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